

산업분석 Vol. 153

생성형 AI, 車 산업 혁신을 가속화하다

기술정책실 장홍창 책임연구원

KATECH Insight

- ◈ 비정형 데이터 생성에 강점을 지닌 생성형 Al(Generative Al)는 연구개발, 자율주행, 고객지원 등 자동차 업계 전반의 효율성을 제고하고 사용자 경험을 혁신할 잠재력을 보유
- ◆ 주요 완성차 기업들이 생성형 AI의 활용을 위해 외부 AI 기업과 협력을 강화하거나 자체 개발을 추진하는 가운데, 국내 업계도 장기 경쟁력 확보를 위한 기술 내재화에 관심을 두어야 함

» 車 산업에 있어 생성형 AI는 설계부터 고객 경험에 이르는 폭넓은 혁신의 동력을 제공

- 생성형 AI는 유연한 발상과 콘텐츠 생성에 특화된 AI로 산업 전반에서 활용 가치가 증대 중
- ChatGPT 등으로 잘 알려진 생성형 AI는 추론형 AI와 달리 비정형 데이터 생성에 강점이 있으며, 주어진 데이터를 활용하여 텍스트·이미지·음성·영상 등을 창의적으로 만들어 낼 수 있음
- * 반면, 추론형 AI는 주어진 데이터에 대한 분류·예측·판단 등을 통해 정확성과 해석력을 확보하는 데 강점이 있음
- ** LLM(Large Language Model)은 생성형 AI 중 텍스트 데이터를 다루는 모델로 특히 자연어 생성·이해에 특화
- 車 산업에 적용 시 연구개발, 고객 서비스, 공급망 관리, 유지보수 등에서 기대 효과 존재
- 생성형 AI는 자동차 소프트웨어 개발(초기 코드 작성 및 코드 수정, 새로운 SW 시스템 설계 등)의 생산성을 높일 수 있으며, 가상환경 기반 시뮬레이션으로 자율주행 알고리즘 개선 가속화에 기여
- 차량 개발에서는 다양한 제약 조건 하에서 설계와 구성 요소의 조합을 시뮬레이션해 최적 대안을 도출하고, 프로토타이핑(prototyping)을 빠르게 반복하여 3년 이상 소요되는 개발 기간을 단축 가능
- * McKinsey('24년)에 따르면 생성형 AI가 실험·인증 절차를 20~30%, 개발 기간·비용을 20%까지 줄일 수 있음
- 차량 내에 생성형 AI 기반의 운전자 음성 비서 등을 적용하여 고객 지향적 서비스를 창출할 수 있고, 추론형 AI가 주로 활용되는 공급망 관리, 차량 유지관리, 마케팅 등의 개선에도 유용

■ 자동차 산업의 생성형 AI 적용 분야

분야	기대 효과	주요 AI 유형	생성형 AI 적용 예시		
차량 설계 (R&D)	개발 기간 단축	생성형	시스템 SW 프로그래밍, 리버스 엔지니어링, 알고리즘 분석 등		
	성능↑·비용↓	생성형	車·부품·소재의 변형 조합과 구조 생성 시뮬레이션을 통해		
			성능(효율성·경량화·강도·안전성) 강화 및 비용 절감		
	디자인 개선	생성형	물리적인 조건 내 다양한 차량 디자인 시뮬레이션 생성		
자율주행	알고리즘 최적화	추론형+생성형	주행 데이터를 생성하여 가상환경으로 시뮬레이션하여 알고리즘 개선		
유지관리	예측 정비	추론형	차량 센서 및 데이터 패턴을 분석하여 예측적 유지·관리		
			정비 메뉴얼 생성, 이력 기반 문제해결 가이드, 자연어 기반 해결책 제시		
마케팅/영업	고객 경험 개선	생성형	고객 맞춤 가상 디지털 쇼룸 및 대화형 챗봇 제공으로 비용 절감		
운전자 경험	개인화된 HMI	추론형+생성형	운전자 상태 모니터링 및 음성 인터페이스를 통한 맞춤형 제어 기능		

^{*} 출처: McKinsey, Deloitte, BCG 등 참고하여 저자 재작성

» 주요 OEM社는 주로 외부 AI 기업과의 협력을 중심으로 생성형 AI 접목을 시도 중

- 완성차 기업은 복수의 생성형 AI 모델 기업과 협력하여 장점을 융합하는 추세이며, 주로 자연어 기반의 음성 비서, 프로토타입 설계, 고객 응대, 자율주행 고도화 등에 생성형 AI를 활용 중
- Mercedes-Benz는 '23.6월에 음성 비서에 ChatGPT를 통합한 베타 서비스를 도입하여 운전자가 자연어로 차량 기능을 제어하고 다양한 정보를 검색할 수 있도록 개선하여 사용자 경험을 강화
- Toyota는 생성형 AI를 차량 설계 자동화, 고객지원용 챗봇 'AgentAsk', 연비 최적화를 위한 디지털 프로토타입 개발 등에 적용함으로써, 차량 개발 효율성을 높이고 고객 응대 속도를 획기적으로 향상
- Geely는 DeepSeek R1을 음성 인식, 이미지 분석, 실시간 데이터 관리·의사결정 지원에 활용 중이며, BYD·Leapmotor·GWM·SAIC·Dongfeng 등도 DeepSeek를 활용 중

■ 자동차 산업에서의 주요 생성형 AI 적용 사례 (출처: 각 사 및 언론보도 종합) ■

OEM社	내용					
Mercedes -Benz	- `23.6월 인포테인먼트(MBUX) 음성 비서에 ChatGPT를 최초로 통합하여 베타 서비스 시행 - 디지털 생산 생태계(MO360)에 ChatGPT를 통합해 병목 현상 예측, 결함 식별, 문제 해결 - 자체 운영체계(MS.OS)에 LLM을 통합하여 운전자 선호에 맞춘 개인화 및 자동화 제공					
Toyota	 차량 디자인 스케치, 현실 물리 조건을 반영한 프로토타입, 최적화 시뮬레이션 등이 가능한 자연어기반 AI 도구 개발 후 개발 프로세스에 통합 중 고객 지원 직원용 생성형 AI 챗봇 AgentAsk를 개발해 기술 문서를 학습하고 SW·HW 문제 해결정보를 지원함으로써, 평균 수리 시간을 3일→11.4분으로 단축하여 연 7만 시간 인력소요 절감 					
Tesla	 x.AI에서 자체 개발한 LLM인 Grok을 통합하여 차량-운전자 간 지능적 커뮤니케이션 제공 예정 생성형 AI 기반 가상 시나리오로 주행환경을 반복 시뮬레이션하는 환경을 구축하고, 신경망 모델을 최적화해 자율주행 고도화에 활용 					
GM	 Autodesk와의 협력하에 생성적 설계 툴을 활용해 경량화·강도·효율성이 향상된 부품을 개발 커넥티드 카 서비스인 OnStar에 Google Dialogflow 기반 생성형 AI 기반 챗봇 도입 '23년 MS Azure OpenAI 서비스를 활용해 생성형 AI 기반 음성 비서 시스템 개발계획을 발표 					
Geely	- 자체 개발 LLM인 Xingrui에 기반하여 주행 효율 최적화, 유지보수, 스마트폰 등 생태계 확장 시도 - DeepSeek R1을 Xingrui에 통합하여 음성 인식, 이미지 분석, 실시간 데이터 관리를 개선					
BYD	- 전 모델에서 DeepSeek R1을 기반으로 자체 AI 통합 아키텍처(Xuanji)를 ADAS('God's Eye)에 적용하여, 음성 명령을 통한 차량 및 인포테인먼트 시스템 제어, 주차 및 자율주행 내비게이션 지원					

• 레거시 OEM社는 주로 미국의 AI 모델을 활용하는 반면, 중국의 OEM社는 자국 AI를 채택하고 자체 LLM 개발을 보다 적극적으로 추진하는 것이 특징

- 미국·유럽·일본 OEM社는 주로 미국 Al 기업인 MS, OpenAl, Google, Amazon 등과 협력하는 반면, 중국은 주로 DeepSeek·Baidu·Alibaba·Tencent와 협력하여 Al 모델을 적용
- 중국 OEM社들은 DeepSeek와 같은 자국 AI 모델을 활용하면서도, 보다 적극적으로 LLM 자체 개발을 병행하여 외부 모델과 통합하거나 장기적으로 독자성을 확보하려는 것이 주목할 부분
- * 중국을 포함한 대다수 OEM社들은 AI 관련 풀 스택(HW·SW) 플랫폼 공급을 위해 美 엔비디아와 협력 중
- 현대자동차는 ChatGPT 탑재와 동시에 자회사 AIRS Company를 통해 자체 생성형 AI 모델 글레오(Gleo)를 개발하고 있으며, 대규모 자연어 처리 기술을 위해 네이버·카카오와 협력 지속

■ 자동차 OEM 기업의 생성형 AI 협력 및 LLM 전략 ■

국가	OEM社	생성형 AI 협력	자체 LLM	국가	OEM社	생성형 AI 협력	자체 LLM
미국	GM	MS, OpenAI, Google	_	일본	Toyota	MS, Google	_
	Ford	Google	_	2亡	Honda	Google	_
	Tesla	xAl(관계사)	O(Grok)	다국적	Stellantis	Amazon, Google	_
독일	Mercedes -Benz	MS, OpenAl, Google	_		BYD	DeepSeek	O(개발 중)
	BMW	Amazon, 알리바바	_	중국	Xiaomi	_	O(MiMo,MiLM)
	Volkswagen	Cerence, OpenAl	_		Geely	DeepSeek	O(Xingrui)
한국	현대차·기아 OpenAI, 네이버, 카카		O(Gleo AI)		Changan	Baidu, Tencent	△(개발환경 구 축)

^{*} 출처: 각 사, 언론 종합 ** LLM 자체 개발 여부는 공개된 연구개발 활동에 근거하며, 기업의 실제 활동과 상이할 수 있음

» 생성형 AI를 車 산업에 접목함에 있어 외부 AI 모델 활용 전략에는 장단점이 혼재

- 외부 모델 활용 시 인력, 데이터 등 개발 비용을 절감하고, 소비자에게 친숙한 서비스 제공이 용이
- 개별 기업이 고성능 LLM을 자체 개발하는 것은 비용·시간이 수반되므로 외부 AI 모델을 채택하여 연구개발 부담을 줄이고, 상용 플랫폼과 연계한 데이터 분석, 최신 서비스 등을 손쉽게 제공 가능
- * 예컨대 ChatGPT·Gemini 등은 멀티모달 처리와 고도화된 자연어 이해·생성 능력을 보유하고 있어 실시간 반응, 높은 정확도, 뛰어난 상황 인지 능력을 바탕으로 소비자 사이에서 생성형 AI 서비스의 기준점이 되고 있음
- 반면, 차량 시스템과의 통합에 제약이 발생하거나, 데이터 관리 등의 이슈가 제기될 수 있음
- 외부 모델 활용 시 OEM社가 요구하는 기능(실시간성 등)·구조를 맞춤형으로 반영하는 데 제약이 있을 수 있고, 글로벌 AI 모델은 언어·문화 등에서 현지 특성을 충분히 반영하지 못할 가능성이 존재
- 차량에서 수집된 민감 데이터(운전자 생체·행동·상태, 상호작용 등)에 대해 관리·통제가 어려워지거나, 기술 의존에 따른 API 가격 인상, 서비스 제한 등 특정 플랫폼 락인(lock-in) 효과 발생 우려

» 장기 경쟁력 측면에서 SW 역량 기반의 LLM 기술 내재화, 데이터 이슈 등에 관심 필요

- 향후 SW 기술 역량이 생성형 AI 활용 능력에 영향을 주어 기업 간 격차 심화가 예상되므로, 업계는 자체 혹은 교섭력을 가진 LLM 기반의 고성능 시스템 내재화를 목표로 설정해야 함
- 車 기업이 보유한 SW 역량(SW 아키텍처 최적화 등)이 생성형 AI 활용도를 좌우함에 따라, SW 역량이 충분한 기업과 그렇지 못한 기업 간에 개발 속도, 품질, 신뢰성 등에서 유의미한 격차 발생 예상
- 한편 국내의 AI 모델이 아직 경쟁력이 부족함에 따라 단기적으로는 외부 AI 모델을 활용하더라도, 장기적으로 범용 LLM을 내재화하여 대외 교섭력을 확보해야 할 필요가 있음
- * 경쟁력 있는 LLM을 내재화함으로써 [●]車산업의 기술개발 데이터가 문서·코드 등 텍스트 중심임에 따른 개발 효율성 강화 [●]이미지·음성·센서 데이터와 결합 가능한 멀티모달 확장성 확보 [●]데이터 주권 강화가 가능
- 또한 SDV(소프트웨어 정의 자동차) 전환 측면에서도 생성형 AI의 중요성이 높아질 것이므로, 그 기반이 되는 데이터의 활용성·신뢰성, 윤리·보안 문제 해소 등에도 관심을 기울여야 함
- 생성형 AI의 활용은 복잡한 SW 기술을 요하는 전장 설계 및 기능 제어, 사용자 인터페이스 고도화, 각종 서비스 확장 등에서 개발을 가속화하고 비용을 절감하여 SDV로의 전환을 촉진할 수 있음
- 이 때 AI 기반 시스템의 신뢰성·안정성 보장을 위해, 생성형 AI에 대한 광범위한 검증과 자동차 관련 데이터의 윤리·보안 문제 해소가 가능한 통합적 표준 車 AI 프레임워크 개발이 필요